The Pulse July 25, 2014

ANNUAL DRINKING WATER QUALITY REPORT

Annual Water Quality Report for the period of Jan. 1 to Dec. 31, 2013.

This report is intended to provide you with important infromation about your drinking water and the efforts made by the water system to provide safe drinking water.

Hart Municipal Water System For more information regarding this report, contact Adrian Rosas, 806/938-

2171. Este reporte incluye información importante sobre el agua para tomar. Para asistenci en español, favor de llamar al telefono (806) 938-2171.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minute before using water for drinking or cooking. If you are concented about lead in your water, you may wish to vour water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Sources of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the lan or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or fin human activity.

ants that may be present in source water include

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also confrom gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

06/20/2014 - TX0350002 2013 2014-06-20 11-39-53.DOC

ead and Copper

annous.

On Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety on Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2013	1.3	1.3	0.0826	0	ppm	N	Erosion of natural deposits; Leaching from preservatives; Corrosion of household plum systems

Water Quality Test Results

Definitions The following tables contain scientific terms and measures, some of which may require explanation Regulatory compliance with some MCLs are based on running annual average of monthly samples

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment to

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial

NTU nephelometric turbidity units (a measure of turbidity) pCi/L picocuries per liter (a measure of radioactivity) micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water

milligrams per liter or parts per million - or one ounce in 7,350 gallons of water

Water Quality Test Results

parts per trillion, or nanograms per liter (ng/L)

A Source Water Susceptibility Assessment for your drinking water source(s) is currently being updated by the Toxas Commission on Environmental Quality. This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus source water protection stra

For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: http://gis3.teeq.state.tx.us/swav/Controller/index.jsp?wtrsn

Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL: http://dww.tceq.texas.gov/DWW Source Water Name Type of Water Report Status Location

Disinfectant Residual Reporting

Year	Chemical Used	Average Level of Quarterly Data	Lowest Result of a Single Sample	Highest Result of a Single Sample	Maximum Residual Disinfectant Level (MRDL)	Maximum Residual Disinfectant Level Goal (MRDLG)	Unit of Measure	Source of the Chemical
2013	Chlorine (Free)	1.44	0.70	2.20	4.0	<4.0	ppm	Disinfectant used to control microbes

Chlorine			
Some people who use water containing chlorine wexperience stomach discomfort.	vell in excess of the MR	DL could experience ir	ritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDI, coal
Violation Type	Violation Begin	Violation End	Violation Explanation
Disinfectant Level Quarterly Operating Report (DLQOR).	01/01/2013	03/31/2013	We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sur- quality of our drinking water during the period indicated.

The Lead and Copper Rule protects public health containing plumbing materials.	by minimizing lead and	copper levels in drinking	g water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead an-
Violation Type	Violation Begin	Violation End	Violation Explanation
FOLLOW-UP OR ROUTINE TAP M/R (LCR)	10/01/2010	2013	We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sur-

ect.	Asbestos	Cyanide	Metals	Microbial	Minerals	Radiochemical	-y game		Volatile Organic	Drinking Water Contaminant Candidate	Other
	HIGH	MEDIUM	HIGH	HIGH	HIGH	MEDIUM	HIGH	MEDIUM	HIGH	HIGH	HIGH

Entry Point Susceptibility Summary

Entry Point ID	Asbestos	Cyanide	Metals	Microbial	Minerals	Radiochem	Sythetic Organic Chemicals		Volatile Organic Chemicals	Drinking Water Contaminant Candidate	Otl
001	HIGH	MEDIUM	HIGH	HIGH	HIGH	MEDIUM	HIGH	MEDIUM	HIGH	HIGH	ни

Regulated Contaminants

Disinfectants and Disinfection By-Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Total Trihalomethanes (TTHM)	2013	1.11	1.11 - 1.11	No goal for the total	80	ppb	N	By-product of drinking water disinfection.
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	01/20/2009	0.141	0.141 - 0.141	2	2	ppm	N	Discharge of drilling wastes; Discharge from merineries; Erosion of natural deposits.
Fluoride	03/08/2012	1.58	1.58 - 1.58	4	4.0	ppm	N	Erosion of natural deposits; Water additive whi promotes strong teeth; Discharge from fertilize aluminum factories.
Nitrate [measured as Nitrogen]	2013	1	0.518 - 0.518	10	10	ppm	N	Runoff from fertilizer use; Leaching from sept tanks, sewage; Erosion of natural deposits.
Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	03/08/2012	5.8	5.8 - 5.8	0	50	pCi/L*	N	Decay of natural and man-made deposits.

Li A considers to peak to be in	a A consideration point to de the level of contents to rectain the										
Combined Radium 226/228	03/08/2012	2.5	2.5 - 2.5	0	5	pCi/L	N	Erosion of natural deposits.			
Gross alpha excluding radon and uranium	03/08/2012	2.5	2.5 - 2.5	0	15	pCi/L	N	Erosion of natural deposits.			
Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination			
Benzene	2013	2	2.27 - 2.27	0	5	ppb	N	Discharge from factories; Leaching from gas st tanks and landfills.			